저자명 김석봉 
년도 2010 
Sheet metal formability is generally defined as the ability of metal to deform into desired shape without necking or fracture. Each type of sheet metal can be deformed only to a certain limit that is usually imposed by the onset of localized necking, which eventually leads to the fracture. A well-known method of describing this limit is the forming limit diagram (FLD), which represents the locus of the necked or fractured position of sheet metals in the space of in-plane principal strains, $epsilon1$-$epsilon2$, where $epsilon1$ is the major strain and $epsilon2$ is the minor strain. The locus of the forming limit is called the forming limit curve (FLC), and the FLC is affected by many factors, such as the forming speed, the lubrication condition, the thickness of sheets, the strain hardening, and the anisotropy of the sheet metals. The forming speed for FLC is particularly significant because the dynamic response of sheet metals differs considerably from the static response. This paper is concerned with the dynamic tensile properties and formability of steel sheets in relation to the strain rate effect. The elongation at fracture increases at a high strain rate for CQ; however, the elongation at fracture for DP590 decreases slightly in relation to the corresponding value for a quasi-static strain rate. The uniform elongation and the strain hardening coefficient decrease gradually when the strain rate increases. The r-value of CQ and DP590 was measured with a high-speed camera in relation to the strain rate effect. The r-value is slightly sensitive to the strain rate effect. Because these properties do not show the consistent tendency, the formability cannot be determined with a single tensile property. To properly evaluate the formability of sheet metals, we therefore need to perform a high-speed forming limit test as well as a dynamic tensile test. A static FLC and a high-speed FLC were constructed with the aid of a punch-stretch test with arc-shaped specimens and square-shaped specimens. The arc-shaped specimens provide better results for the fractured strains than conventional rectangular specimens. A high-speed crash testing machine with a specially designed high-speed forming jig was used for the high-speed punch-stretch tests. The forming velocity was decided by finite element analysis of punch-stretch test with relation to the specimen dimension. Compared with the static FLC, the high-speed FLC of CQ is higher in a simple tension region and lower in a biaxial stretch forming region. The high-speed FLC for DP590 decreases in relation to the static FLC throughout the entire region. The elongation at fracture appears to be closely related to the simple tension region of the FLC. The decrease of the high-speed FLC in the biaxial stretch forming region is due to the shear fracture in fracture surfaces. The results confirm that the strain rate has a noticeably influence on the formability of steel sheets. Thus, the forming limit diagram of high-speed tests should be considered in the design of high-speed sheet metal forming processes. In this paper, three theoretical (Hill-Swift, Jun and M-K models) approaches and two empirical (Keeler-Brazier and Raghavan models) approaches were discussed to predict the FLC of sheet metals. The theoretical models are found to be very conservative, especially at plane strain region in FLC. Among the various prediction models, the Raghavan model with NADDRG (North American Deep Drawing Research Group) curve gives better prediction at plane strain region. However, this model still shows some limitation to predict the simple tension region and biaxial stretch forming region of FLC. Therefore, this paper suggested the modified Raghavan model for CQ and DP590, and changed the angle between two lines of NADDRG curve. In the case of the strain rate sensitive steel sheets of CQ, the high-speed FLC is higher than the static FLC in the simple tension region and shows a slight reduction in the biaxial stretch forming region. Although the advanced high strength steel, DP590 is insensitive to the strain rate, the high-speed FLC decreases considerably. Thus, when determining the forming speed of sheet metal forming process, we need to consider how the formability varies in relation to the strain rate effect.
번호 제목 저자명 날짜 조회 수
27 Anisotropic Fracture Limit for the Failure Prediction of Advanced High-Strength Steel Sheets (고강도 강판의 파괴 예측을 위한 이방성 파괴 한계에 관한 연구) 박남수  2017.06.07 366
26 A Study on the Nonlinear Behaviors of Polymer-Bonded Explosives Considering Stress Softening Effect(응력연화현상을 고려한 복합화약의 비선형 거동에 관한 연구) 염기선  2013.09.08 4884
25 Rate-Dependent Hardening Model for Polymer-Bonded Explosives Considering a Wide Range of Strain Rates (광범위한 변형률속도를 고려한 복합화약의 변형률속도 의존 경화모델) 박충희  2013.08.30 3656
24 Dynamic Failure Criteria of a Laser-welded Region under Combined Loading Conditions for Auto-body Crash Analyses (차체용 부재의 충돌해석을 위한 복합하중조건에서 레이저 용접부의 동적 파단조건 연구) 하지웅  2013.04.14 7416
23 Rate Dependent Hardening Model for Pure Titanium Considering the Effect of Deformation Twinning (쌍정의 영향을 고려한 티타늄의 변형률속도 의존 경화 모델) 안광현  2012.12.12 17149
22 Strain-Rate Dependent Anisotropic Yield Criteria for Auto-body Steel Sheets (자동차용 강판의 변형률속도 의존 이방성 항복함수에 관한 연구) 허지향  2012.12.11 17982
21 A New Ductile Fracture Criterion for the Formability Prediction of Steel Sheets and Its Application to Finite Element Analysis (강판의 성형성 예측을 위한 새로운 연성 파괴 조건 및 유한 요소 해석에의 응용) [1] Yanshan Lou  2012.12.10 20982
20 Measurement Uncertainty Evaluation for High Strain Rate Tensile Properties of Auto-body Steel Sheet (자동차용 강판 고속인장물성 데이터의 측정불확도 산출) 정세환  2012.12.10 17709
19 A Study on a Continuum Damage Yield Function to Predict Ductile Fracture of Materials (재료의 연성파단을 예측하기 위한 연속체 손상 항복 함수에 관한 연구) 고윤기  2012.12.10 14571
18 A Study on the Tension/Compression Hardening Behavior of Auto-body Steel Sheets Considering the Pre-strain and the Strain Rate (초기 변형률 및 변형률 속도를 고려한 차체 강판의 인장/압축 경화 거동에 관한 연구) [1] 배기현  2011.01.11 20281
» Forming Limit Diagram of Auto-body Steel Sheets at High Strain Rates for Sheet Metal Forming and Crashworthiness (박판성형 및 충돌성능 향상을 위한 고변형률속도에서의 차체강판 성형한계도) 김석봉  2010.07.13 21593
16 Evaluation of a cast-joining process of dual metal crankshafts for heavy-duty engines with ductile cast iron and high strength forged steel(구상흑연주철과 고강도 단조강의 주조접합 이종금속을 이용한 중대형 엔진 크랭크샤프트의 평가) 한 신  2010.07.13 17832
15 A Study on Material Properties of OFHC Copper Film at High Strain Rates using High-Speed Micro Material Testing Machine (고속마이크로재료시험기를 이용한 무산소동 박판의 고변형률속도 재료물성치 연구) 김진성  2010.07.13 20167
14 Microscopic investigation of the strain rate hardening for auto-body steel sheet(차체강판 변형률속도 경화의 미시적 관찰) 윤종헌  2010.07.13 16893
13 Analysis of Elasto-Plastic Stress Waves by a Time Discontinuous Variational Integrator of Hamiltonian with a Second-Order Integration Scheme of the Constitutive Model (해밀토니안의 시간 불연속 변분적분기와 구성방정식의 2차 정확도 적분법을 이용한 탄소 조상순  2008.12.15 21652
12 A Study on the Dynamic Failure Model of a Spot Weld under Combined Loading Conditions for Auto-body Crash Analyses (차체용 부재의 충돌해석을 위한 복합하중조건에서 점용접부의 동적 파단모델 연구) [1] 송정한  2008.07.24 18512
11 Study on Dynamic Tensile Tests of Auto-body Steel Sheet at the Intermediate Strain Rate for Material Constitutive Equations (차체강판의 중변형률 속도에서의 동적 인장시험 및 물성 구성방정식에 관한 연구) 임지호  2005.11.29 25435
10 Dynamic Formulation of Finite Element Limit Analysis for Impact Simulation of Structural Members (구조부재의 충돌해석을 위한 유한요소 극한해석의 동적 수식화) 김기풍  2005.11.29 17733
9 Finite Element Inverse Approach and Initial Guess Generation for Sheet Metal Forming Analysis of Complicated Auto-body Members (복잡한 차체부재의 박판성형공정을 위한 유한요소 역해석 및 초기추측치 계산) 김승호  2005.11.29 19059
8 Development of a Nonlinear Degenerated Shell Element with the Drilling Degree of Freedom by the Cubic Polynomial Interpolation and the Assumed Strain Method (드릴링 자유도의 삼차 근사법과 대체변형률법을 이용한 비선형 감절점 쉘 요소의 개발) 이형욱  2005.11.29 17670